Action potential-evoked and ryanodine-sensitive spontaneous Ca2+ transients at the presynaptic terminal of a developing CNS inhibitory synapse.
نویسندگان
چکیده
The existence of spontaneous calcium transients (SCaTs) dependent on intracellular store activation has been reported in putative axonal terminals of cerebellar basket interneurons. We used the two-photon imaging technique to optically identify basket terminals in acute cerebellar slices of young rats (11-16 d old) and study the properties of SCaTs unambiguously localized in these regions. The whole-cell recording configuration and preloading technique were alternatively used to load the calcium-dependent dye in the interneuron and compare SCaTs with action potential evoked calcium transients. SCaTs were observed in the basket terminals at frequencies that were significantly increased after bath application of 10 microm ryanodine and did not depend on P/Q- or N-type voltage-dependent calcium channel activation. They originated at specific sites where bursts of events with temporal separation as small as 200 msec could be generated. Their sites of origin were spaced on average 6 microm apart and were preferentially located near axonal endings. SCaTs had amplitudes comparable with those of Ca2+ rises evoked by single action potentials that lead to release of neurotransmitter, as confirmed by parallel recordings of preloaded terminals and evoked IPSCs in the postsynaptic Purkinje cells. These results support the hypothesis that SCaTs at basket terminals underlie the large miniature IPSCs characteristic of Purkinje cells.
منابع مشابه
Ryanodine-sensitive component of calcium transients evoked by nerve firing at presynaptic nerve terminals.
Whether Ca2+ released from stores within the presynaptic nerve terminals also contributes to the Ca2+ elevation evoked by action potentials was tested in intact bullfrog sympathetic ganglia. Intraterminal Ca2+ transients (Delta[Ca2+]i) were evoked by electrical shocks to the presynaptic nerves at 20 Hz and were monitored by fura-2 fluorimetry. Ca2+ released through intraterminal ryanodine-sensi...
متن کاملUse-dependent amplification of presynaptic Ca2+ signaling by axonal ryanodine receptors at the hippocampal mossy fiber synapse.
Presynaptic Ca(2+) stores have been suggested to regulate Ca(2+) dynamics within the nerve terminals at certain types of the synapse. However, little is known about their mode of activation, molecular identity, and detailed subcellular localization. Here, we show that the ryanodine-sensitive stores exist in axons and amplify presynaptic Ca(2+) accumulation at the hippocampal mossy fiber synapse...
متن کاملNicotine induces calcium spikes in single nerve terminal varicosities: a role for intracellular calcium stores.
While nicotine is known to act at neuronal nicotinic acetylcholine receptors (nAChRs) to facilitate neurotransmitter release, the mechanisms underlying this action are poorly understood. Some of its effects are known to be mediated by presynaptic receptors. In the mouse vas deferens nicotine (10-30 microM) transiently increased the force of neurogenic contraction by 135+/-25%, increased the amp...
متن کاملCalcium-induced calcium release contributes to action potential-evoked calcium transients in hippocampal CA1 pyramidal neurons.
Calcium-induced calcium release (CICR) is a mechanism by which local elevations of intracellular calcium (Ca2+) are amplified by Ca2+ release from ryanodine-sensitive Ca2+ stores. CICR is known to be coupled to Ca2+ entry in skeletal muscle, cardiac muscle, and peripheral neurons, but no evidence suggests that such coupling occurs in central neurons during the firing of action potentials. Using...
متن کاملNeuropeptide Y Action in the Rat Hippocampal Mechanism of Presynaptic Inhibition Slice: Site and
Neuropeptide Y (NPY), the most abundant peptide in mammalian CNS, has been shown to inhibit excitatory neurotransmission presynaptically at the stratum radiatum-CA1 synapse in the in vitro rat hippocampal slice. We examined the site and mechanism of this inhibition in a series of in vitro intraand extracellular recordings in areas CA1 and CA3, the source of much of the excitatory synaptic input...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 31 شماره
صفحات -
تاریخ انتشار 2004